
IT
 U

N
IV

ER
SI

TY
 O

F
C

O
PE

N
H

A
G

EN

SUBMISSION OF WRITTEN WORK
Class code:

Name of course:

Course manager:

Course e-portfolio:

Thesis or project title:

Supervisor:

Full Name: Birthdate (dd/mm-yyyy): E-mail:

1. @itu.dk

2. @itu.dk

3. @itu.dk

4. @itu.dk

5. @itu.dk

6. @itu.dk

7. @itu.dk

8. @itu.dk

IT UNIVERSITY OF COPENHAGEN, DECEMBER 2018 1

Hyper Neuroevolution
Christian Carvelli, Mads Falkenberg Søonderstrup

Abstract—Backpropagation has been proven to be a valuable tool with which to train artificial neural networks (ANNs) for a given task.
One issue with backpropagation on its own is that information is lost about the ANN every time backpropagation takes place as no
information is stored about the ANN’s previous state. This essentially means that the ANN is merely a function optimizer and will be
hard to fit for similar tasks let alone different tasks because it does not retain information about general rulesets. The demand for
general purpose ANNs is increasing, so learning to learn is essential. Meta-learning has emerged as the solution, where ANNs have to
learn the rules for learning. In this paper we aim to lay down a stepping stone for meta-learning in neuroevolution, using the theory of
hyper networks, a supervised learning technique, for a reinforcement learning task. We go over how we achieved indirect
representation in the genome for game agents, what this means for neuroevolution and how this opens up venues for further
experimentation in the future in regards to meta-learning.

Index Terms—Neuroevolution, Reinforcement Learning, Meta-Learning, Indirect encoding

F

1 INTRODUCTION

FOR certain problem domains it is sufficient enough to
employ supervised learning and unsupervised learning

techniques when training neural networks. The issue with
these approaches is that the environment they work on
are static. The content the neural networks have to process
changes but the environment stays the same meaning that
a network trained for a particular task will prove inefficient
and unusable for another task.

Reinforcement Learning (RL) is trying to get around this
by only being given the action space and what constitutes
a reward, more akin to how humans learn. This is better
for tasks that have dynamic environments with a static
action space, however networks trained this way can often
take thousands of hours to attain a level of performance
comparable to or better than humans, whereas humans only
need a fraction of the time. Adding to that, the possible tasks
that RL can take on are still relatively limited compared to
what humans can do.

Deep artificial neural networks (DNNs) are usually
trained using backpropagation which is based on gradient
descent. Evolutionary Strategies (ES) have shown that it
can compete with backpropagation algorithms such as Q-
learning and policy gradients in some RL problems. There
is one issue with this however; ES can be considered a
gradient-based algorithm and thus the question becomes
whether it is possible to make use of non-gradient-based
evolutionary algorithms which can work at DNN levels of
complexity or not.

Genetic algorithms (GAs) have have been proved com-
petitive in RL tasks, specifically in the Atari and human
locomotion domains. Experimentation shows that they per-
form similarly to ES, A3C and DQN while taking advantage
of high performant parallel computing optimizations, while
showing again that there is no absolute winner but that is
important to pick the right algorithm for the given task.

We believe that, using indirect representation, Deep
Neuroevolution (DNE) can be improved achieving compa-

• chca@itu.dk
• mfso@itu.dk

Fig. 1. Typical loop of an optimization process. The optimizer receives
the reward from the environment and uses it to tweak the parameters
of the controller (or controllers, in case of evolutionary optimizer), but it
doesn’t change the controller’s architecture

rable results to other RL optimizers with less parameters
while also possible open up venues for additional experi-
ments with meta-learning and neuroplasticity.

We will achieve this by making a Hyper Neural Network
(HNN) that is responsible for the generation of a much
larger network, the policy network, which does the decision
making for the provided input by the environment. With
this approach the HNN will be responsible for generating
the weights for the policy network. The HNN achieves this
by having full knowledge of the policy network topology.
This will result in having more efficient networks as less
parameters are required, thus less computing time.

The original work on Hypernetworks experimented with
supervised learning tasks and, to our knowledge, to this day
no attempt have been made to use Hypernetworks on RL
tasks, nor to use them with neuroevolution.

IT UNIVERSITY OF COPENHAGEN, DECEMBER 2018 2

2 BACKGROUND

2.1 Theory

Neuroevolution as a mechanism to generate neural net-
works was first approached by Yao in the late 1990’s [22],
addressing the possibility of evolving weight distribution,
topology, or both. After Deepmind’s breakthrough in end-
to-end Atari controllers with DQN [10], many optimization
methods from the classic literature have been adapted to
DNNs [9], [17], including evolutionary algorithms like ES
[16].

While evolutionary optimizers focus solely on gener-
ating the weights of the networks, efforts have also been
made into evolving network topologies [2], [19]. NEAT was
later used as a base for an indirect-encoding version of
the algorithm called HyperNEAT [18] that got a great deal
of attention [12], [13], [14], [15] and generated interest in
indirect-encoded networks.

2.2 Related work

Such et al. [20] use DNE to train agents using a Genetic
Algorithm (GA) as a gradient-free method. Their work
shows that GAs are able to compete with other gradient-
based optimizers and with other evolution based methods
such as Evolution Strategies (ES) in the Atari domain.

Salimans et al. [16] shows a compression method, also
used in the DNE paper, that allows them to efficiently scale
up their ES methods across multiple networked workers.
The method consists of storing only the random seeds
used for mutation, as well as the random seed used to
initialize the model’s first ancestor. This way, a model can
be reconstructed simply by initializing it as its first ancestor
and then replicating all the mutations that led to the current
version.

Ha et al. [7] develops a method they called Hyper-
networks as an indirect-encoding method reminiscent of
HyperNEAT [18] but completely trained with backpropa-
gation. They focus their work on convolutional and resid-
ual networks (with the version they call static hypernet-
work), managing to achieve results comparable to fully
connected networks but reducing the amount of parameters
by several orders of magnitude, and on LSTM (dynamic
hypernetwork) reaching state-of the-art results in language
modelling and other tasks. Our work is focused on static
hypernetworks, Figure 2 explains how they work.

2.3 Tools

PyTorch [1] is an open-source machine learning library
that provides many high-level features like GPU-accelerated
tensor computation, modularized deep network architecture
and API for common ML tasks as natural language process-
ing and computer vision (torchvision module).

OpenAI Gym [4], [11] is a toolkit for developing and
comparison RL algorithms. It provides a collection of test
problems implementation (environments) as well as a com-
mon interface for RL problems. Many environments are
available, ranging from classic controls to Atari games based
on the ALE framework [3] to robotics.

3 METHODS

Based on Ecofett’s DNE [5] we tested the results obtained in
the DNE paper, obtaining comparable results on the deter-
ministic version of the Frostbite Atari game environment.
We used the originally proposed networked architecture
with model compression based on random seeds. This first
experiment was stopped after three days of computation,
using three to eight computers running four workers each at
any given point, after almost reaching the peak performance
obtained in the original DNE paper using c.a. 365 million
frames (out of the one billion used in the original work).
We then proceeded to add an HNN to the model used for
the controller, using the implementation provided by Ha [6].
The preliminary runs showed very poor results, generated
mostly by bugs that we introduced editing the original
architectures to make them a) compatible with each other
and b) flexible enough to allow easy experimentation and
change of parameters and architectures.

Since Ha’s architecture consisted simply of two linear
layers, we initially tried to follow their own simple imple-
mentation with simple matrix multiplications. This wasn’t
compatible with Pytorch’s Module pattern and our code
wasn’t hooked up properly to the framework’s code, caus-
ing problems during evolution. Due to our inexperience at
the time we decided, instead of adapting that particular
implementation, to follow Pytorch’s pattern and use Linear
layers, that solved the problem.

In the meantime we tried many different ways of an-
alyzing the relationships between the HNN and the pol-
icy network, both at initialization time and during evolu-
tion.The most useful one was to statistically compare the
initialization of the policy network layers of the DNE setup
with the ones generated by an HNN. We saw that our first
HNN setup was yielding weights that were on average
in the hundreds and with a different standard deviation
with respect to the parameters used to initialize the policy
network during the DNE tests. Tweaking the HNN initial-
ization parameters and adding a multiplication constant to
the output before applying it to the network helped reach
the first comparable results with DNE’s original paper [20].

A brief attempt has been made using a different gym
environment called Bipedal Walker, a simple robot con-
troller with the objective to reach the furthest distance. We
don’t have relevant data from these experiments, but we
got first-hand experience with continuous control problems.
That helped us figure out that our controller got an initially
good improvement, but failed to overcome some of the
earliest plateaus due to a great instability in the optimization
process.

Another problem, discovered after the main set of exper-
iments had to be terminated due to external factors, was
our handling of the z vector. It turned out that during
compression we saved the current evolved version of it,
while the evolution method expected the original z vector
so it could regenerate it in a similar fashion to the HNN
weights.

Initially we setup a networked architecture, but we
ran into issues with workers not deploying correctly after
changes were made to the code. After removing the net-
working code during development, we didn’t reintegrate it

IT UNIVERSITY OF COPENHAGEN, DECEMBER 2018 3

Fig. 2. Controller network setup. When the controller is initialized, a vector of floating point numbers is fed to the hypernetwork for each layer in the
policy network. The output of the network has the size of the biggest layer in the policy network and it’s resized and reshaped properly for each
layer.

Population size (N) 1000
Mutation rate (σ) 0.005
Truncation size (T) 10
Number of trials 1
z v evolution P 0.5

TABLE 1
Hyperparameters used for both DNE and HNE runs

for the final test suite as we thought it was a bottleneck
for our experiments due to long waiting times when a job
failed, but also becase of a decrease in hardware availability.

3.1 Hyperparameters and architecture

The hyperparameters used for the runs reported here are
shown in Table 1. Those are the ones used in [5] and deviate
slightly from the ones used in the original paper. For our
HNN setup, we also needed an additional hyperparameter
used to determine when to evolve the z vector and when
to evolve the HNN. We hypothesized that simultaneusly
evolving the HNN and the z vector could be problematic for
the GA, but this should be investigated further. A proper ex-
ploration of the optimal hyperparameters for the HNN, and

how they differ from the ones used for the non-augmented
controller, could explain a lot about how the two networks
relate to each other, but currently we lack the resources to
do that. What we could do is to try the hyperparameters of
the original work and see which one fits best for the given
task1.

Similarly, our architecture is borrowed from Ecoffet and
shown in Table 2.

4 RESULTS

The results of our main experiment are shown in Fig. 3,
run before we found the z vector bug. The fact that the
evolution process used as a start the already evolved z
vector turned out to effectively perturb the z vector, acting
as noise for the policy network initialization. This of course
hindered the performance of our controller, but did not
made it completely ineffective, due to the natural neural
network’s resistance to noise. In fact, the run executed

1. Is worth to mention that, to our knowledge, Ecoffet tried (and we
imagine optimized) the hyperparameters for the Frostbite environment,
while Such at al. experimented on many Atari games and additional
environments

IT UNIVERSITY OF COPENHAGEN, DECEMBER 2018 4

Layer Type in-features out-features kernel stride

conv1 conv + relu 4 43 8x8 4
conv2 conv + relu 32 64 4x4 2
conv3 conv + relu 64 64 3x3 1
dense linear + relu 1024 512
out linear 512 18

l1 linear + relu 32 128
l2 linear + relu 128 128
out linear 512 1204 * 512

TABLE 2
Network architecture. The first section refers to the policy network
architecture for both DNE and HNE. The second section refers to

HNE’s hypernetwork.

Fig. 3. Results of experiments run with code that used z vectors per-
turbed by noise. The run executed with deterministic environment and
noisy start (Green) got stuck on a very early plateau, with results compa-
rable with RS. The non-deterministic run (Red) got strangely comparable
results, but had to be terminated early due to hardware problems.
Random Search (yellow) and DNE runs added for comparison.

with a deterministic but noisy environment (Green) showed
to be not much better of a RS, even if more stable. The
run executed with a non-deterministic environment (Red)
seemed to yield comparable results to the original DNE, but
we don’t have a complete run due to external problems with
the hardware. At the time of writing, an experiment that
handles the z vector properly is running showing promising
(even if still not conclusive) results.

5 DISCUSSION

Before discussing how comparable our results are to the
ones of Such et al. it is paramount to underline that our
results are only indicative and not conclusive. In the re-
search done on DNE the elite was tested five times for every
run with the final score for each elite as the mean of 30
independent episodes. In our experiments the elite of each
run was only tested once mainly due to time and hardware
constraints. Following the same procedure would allow us
to test if our results are statistically relevant. We also only
tested on the frostbite game gym making it possible for the
HNE to compete much worse or better in other games.

With that in mind our test results do hint at there being
potential for an HNN to compete with current implementa-
tions of deep neuroevolution using less parameters, for the
same task.

Going forward what needs to be looked into further is
more experimentation with more rigorous testing to verify
that the hyper network augmented controller indeed does
perform comparably in not just Frostbite but also in the
other Atari gyms using indirect encoding of the genome
then later move on to other types of gyms like the Bipedal
Walker and possibly other robotics tasks such as the MuJoCo
Humanoid Locomotion. Meet the experimentation time and
resources required for this kind of rigorous and extensive
experimentation could prove problematic. Towards the end
of the project we managed to have a reliable setup for
networked experiments, but the hardware necessary to run
them in reasonable amount of time is not easy to obtain.
Even the last, most optimized version of the networking
setup managed to obtain some useful results from HNE on
an Atari game in roughly 16 hours. Run minimal or non-
networked experiments would probably end up in very
long iteration iteration times that would probably hinder
the research. Then we can move on to looking into meta-
learning possibilities using an HNN .

The desired outcome being that the HNN will enable
the controller to express neuroplastic properties by utilizing
previously learned rules and policies.

Another interesting prospect of future research would be
to adapt an HNN to work with ES. It might prove beneficial
to introduce the HNN to ES since the HNN reduces the
dimensionality of the problem which many versions of ES
don’t scale well with [8], [21].

This could have rather large implications for continu-
ous learning and one-shot learning as the HNN could act
as a facilitator for meta-learning, reducing the time and
resources required to train a network for any given task.
Another interesting approach would be to try an Hyper
ES implementation as it could prove beneficial since the
HNN reduces the dimensionality of the problem and many
versions of ES don’t scale well with it [8], [21]. Finally, future
work will surely include tests the setup in different domains
such as other Atari games, the Bipedal Walker environment
and possibly the MuJoCo Humanoid Locomotion and other
Robotics tasks.

6 CONCLUSION

We managed to combine HNN and DNE creating what we
called Hyper Neuroevolution; allowing for a more indirect
representation of our agents, resulting in controllers that
may be indicative of being comparable to current DNE
implementations.

Our results are not conclusive by any means but they
do seem to point towards a different approach to DNE
that could result in more efficiently packed networks for
challenging RL tasks, as well as networks that are able to
exploit regularities and symmetries in problems that have
regularities and symmetries that can be exploited. More
experimentation is required for the results to be conclusive.

With more research, we hope that HNN will prove useful
in the meta-learning research.

REFERENCES

[1] Pytorch an open source deep learning platform that provides a
seamless path from research prototyping to production deploy-
ment., December 2018.

IT UNIVERSITY OF COPENHAGEN, DECEMBER 2018 5

[2] Peter J Angeline, Gregory M Saunders, and Jordan B Pollack. An
evolutionary algorithm that constructs recurrent neural networks.
IEEE transactions on Neural Networks, 5(1):54–65, 1994.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowl-
ing. The arcade learning environment: An evaluation platform for
general agents. In Proceedings of the 24th International Conference on
Artificial Intelligence, IJCAI’15, pages 4148–4152. AAAI Press, 2015.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym.
CoRR, abs/1606.01540, 2016.

[5] Adrien L. Ecoffet. Paper repro: Deep neuroevolution, 2018.
[6] David Ha. Supercell, 2016.
[7] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv

preprint arXiv:1609.09106, 2016.
[8] Nikolaus Hansen, Sibylle D Müller, and Petros Koumoutsakos.

Reducing the time complexity of the derandomized evolution
strategy with covariance matrix adaptation (cma-es). Evolutionary
computation, 11(1):1–18, 2003.

[9] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928–
1937, 2016.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[11] OpenAI. Openai gym a toolkit for developing and comparing
reinforcement learning algorithms., December 2018.

[12] Justin K Pugh and Kenneth O Stanley. Evolving multimodal con-
trollers with hyperneat. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, pages 735–742. ACM, 2013.

[13] Sebastian Risi, Joel Lehman, and Kenneth O Stanley. Evolving the
placement and density of neurons in the hyperneat substrate. In
Proceedings of the 12th annual conference on Genetic and evolutionary
computation, pages 563–570. ACM, 2010.

[14] Sebastian Risi and Kenneth O. Stanley. Enhancing es-hyperneat to
evolve more complex regular neural networks. In Proceedings of
the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’11, pages 1539–1546, New York, NY, USA, 2011. ACM.

[15] Sebastian Risi and Kenneth O Stanley. An enhanced hypercube-
based encoding for evolving the placement, density, and connec-
tivity of neurons. Artificial life, 18(4):331–363, 2012.

[16] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya
Sutskever. Evolution strategies as a scalable alternative to rein-
forcement learning. arXiv preprint arXiv:1703.03864, 2017.

[17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347, 2017.

[18] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A
hypercube-based encoding for evolving large-scale neural net-
works. Artificial Life, 15(2):185–212, 2009. PMID: 19199382.

[19] Kenneth O Stanley and Risto Miikkulainen. Evolving neural net-
works through augmenting topologies. Evolutionary computation,
10(2):99–127, 2002.

[20] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel
Lehman, Kenneth O Stanley, and Jeff Clune. Deep neuroevolu-
tion: genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint
arXiv:1712.06567, 2017.

[21] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan
Peters, and Jürgen Schmidhuber. Natural evolution strategies. The
Journal of Machine Learning Research, 15(1):949–980, 2014.

[22] Xin Yao. Evolving artificial neural networks. Proceedings of the
IEEE, 87(9):1423–1447, 1999.

	Frontpage
	CHCA_MFSO_Report

	SUBMISSION OF WRITTEN WORK: 2705850-Autumn 2018
	Name of course: Neuroplasticity with genome indirect representation in game agents (Autumn 2018)
	Course manager: Sebastian Risi
	Course eportfolio: https://learnit.itu.dk/course/view.php?id=3018161
	Thesis or project title 1: Neuroplasticity with genome indirect representation in game agents
	Thesis or project title 2: Sebastian Risi
	Name 2: Mads Falkenberg Sønderstrup
	Name 1: Christian Carvelli
	Name 3:
	Name 4:
	Name 5:
	Name 6:
	Name 7:
	Name 8:
	Birthdate 1: 23/03-1993
	Birthdate 2: 30/03-1991
	Birthdate 3:
	Birthdate 4:
	Birthdate 5:
	Birthdate 6:
	Birthdate 7:
	Birthdate 8:
	e-mail 1: chca
	e-mail 2: mfso
	e-mail 3:
	e-mail:
	itudk_5:
	itudk_6:
	itudk_7:
	itudk_8:

